
Query Language

Reference Cards

Written by

Gidi Shabat

Artifactory Query Language (AQL)

This guide presents a brief reference
t o A r t i f a c t o r y Q u e r y L a n g u a g e .

For full details, please visit wiki.jfrog.com/aql

Page Contents

Syntax and Usage

Entities and Fields

Constructing Search Criteria

Field Criteria

Overview

Properties Criteria

Compounding Criteria

Comparison Operators

Using Wildcards

Sorting

Coming soon...

Specifying Output Fields

Displaying All Fields
Displaying Specific Fields

Displaying Fields from Other Entities

Filtering Properties by Key

Overview
Artifactory Query Language (AQL) is specially designed to find artifacts stored within Artifactory's
repositories based on any number of search criteria. Its syntax offers a simple way to formulate
complex queries that specify any number of search criteria, filters, sorting options, and field output
parameters. AQL is exposed as a RESTful API which, when possible, uses data streaming to provide
output data resulting in extremely fast response times and low memory consumption.

Here’s a quick example that shows the power of AQL.

items.find
(
 {
 "$and":
 [
 {"@build.name":{"$eq":"artifactory"}},
 {"@artifactory.licenses":{"$match":"Apache*"}}
]
 }
)

Example:

Find all artifacts of the "artifactory" build which use an Apache license.

items.find(<criteria>)

 .include(<fields>)

 .sort(<order and fields>)

 .limit(<num_records>)

To execute a query, use the following Artifactory REST API call
POST /api/search/aql

Syntax and Usage

curl -uadmin:password -X POST

 http://<host>:<port>/artifactory/api/search/aql -d

 items.find({"repo":{"$eq":"jcenter-cache"}})

//apply the call
//The root URL
//the actual query

Here’s an example using cURL:

//the basic find criteria in JSON format
 //(optional) the fields to include in the output
//(optional) sort fields and order
//(optional) max. output records

AQL operates in the context of three entity types.
You may issue a find request on an item entity type according to the syntax above.

Entity type Field Name Type Description

The name of the repository in which this item is stored
The full path associated with this item
The name of the item
When the item was created
When the item was last modified
When the item was last updated
The name of the item owner
The name of the last user that modified the item
The item type (file/folder/any)
The depth of the item in the path from the root folder
The item's md5 hash code when it was originally uploaded
The item's current md5 hash code
The item's sha1 hash code when it was originally uploaded
The item's current sha1 hash code
The item's size on disk

String
String
String
Date
Date
Date
String
String
Enum
int
String
String
String
String
long

repo
path
name
created
modified
updated
created_by
modified_by
type
depth
original_md5
actual_md5
original_sha1
actual_sha1
size

Item

In addition to tem there are also the property and stat entity types.

While you may not issue a find request directly on these entity types, you may display their fields
and use them in search criteria.

Entity type Field Name Type Description

The property key
The property value
The last time an item was downloaded
The total number of downloads for an item
The name of the last user to download this item

String
String
date
int
String

key
value
downloaded
downloads
downloaded_by

Property

Stat

Entities and Fields

i

Search criteria must be specified in JSON format and can be applied to both fields and properties.

Field Criteria
{"<field>" : {"<comparison operator>" : "<value>"}}

If the query is applied to a different entity type, then the field must be pre-pended by the entity type.

Examples:

Find items whose "name" field matches the expression "*test.*"

items.find({"name": {"$match" : "*test.*"}})

Find items that have been downloaded over 5 times.
We need to include the "stat" specifier in "stat.downloads" since downloads is a field of the stat
entity and not of the item entity.

items.find({"stat.downloads":{"$gt":"5"}})

Tip:
You can use a short notation to specify an “equals” criterion on a field:

{"field" : "value"}

Example:

//Find items whose "name" field equals "utest.class"

Constructing Search Criteria

Regular notation items.find({"name":{"$eq":"utest.class"}})

Short notation items.find({"name":"utest.class"})

Properties Criteria
{"@<property_key>":{"operator":"<property_value>"}}

Example:

 Find items with a property named "os" whose value matches the expression "linux*".
items.find({"@os" : {"$match" : "linux*"}})

Tip:
You can use a short notation to specify an “equals” criterion on a property:

{"@<property_name>" : "<property_value>"}

Example:

Find items with associated properties named "artifactory.licenses" with a value that equals
"GPL".

Regular notation items.find({"@artifactory.licenses" : {"$eq" : "GPL"}})

Short notation items.find({"@artifactory.licenses" : "GPL"})

Compounding Criteria
Search criteria can be compounded into logical expressions using "$and" or "$or" operators. The
default is "$and".

<criterion>={<"$and"|"$or">:[{<criterion>},{<criterion>}]

Examples:

Find all items that are files and are in either the "jcenter" or "my-local" repositories.

items.find({"type" : "file","$or":[{"repo" : "jcenter", "repo" : "my-local" }]})

Find all items in a repository called "my_local" that have a property with a key called
"artifactory.licenses" and a value that is any variant of "LGPL".

items.find({"repo" : "my_local"},{"@artifactory.licenses" : {"$match" : "*LGPL*"}})

Comparison Operators

 Operator Types Meaning

Not equal to
Equals
Greater than
Greater than or equal to
Less than
Less than or equal to
Matches
Does not match

string, date, int, long
string, date, int, long
string, date, int, long
string, date, int, long
string, date, int, long
string, date, int, long
string
string

$ne
$eq
$gt
$gte
$lt
$lte
$match
$nmatch

Using Wildcards

The following table lists the full set of comparison operators allowed:

When using $match and $nmatch, "*" replaces any string and "?" replaces any character.

Examples:

Find items whose "path" field matches the expression "*org/jfrog*":
items.find({"path": {"$match" : "*org/jfrog*"}})

Find all items whose "os" property includes "lin":
items.find({"@os" : {"$match" : "*lin*"}})

To search for any property with a specific value, you can specify "@*" as the key.

Example:

Find items that have any property with a value of "GPL":
items.find({"@*":"GPL"})

To search for any property with a specific key, you can specify "*" as the value.

Example:

Find items that have an "artifactory.licenses" property with any value:
items.find({"@artifactory.licenses":"*"})

 Each query displays a default set of fields in the result set, however you can override this to display
any set of fields.

Displaying All Fields
Use: .include("*")

Example:
To display all fields:
items.find().include("*")

Displaying Specific Fields
If you specify any field from the item domain, then this will override the default output setting.
Use: .include("<field1>","<field2>",...)

Example:
Display only the "name" and "repo" fields of all items:
items.find().include("name","repo")

Displaying Fields from Other Entities
You can also display specific fields from other entities associated with those returned by the query.

If you only specify fields from the property or stat domains, then the output will display the default
fields from the item domain, and in addition, the other fields you expressly specified from the
property or stat domains.

Example:
Display the "name" and "repo" fields as well as the number of "downloads" from the
corresponding "stat" entity.
items.find().include("name", "repo", "stat.downloads")

Display the default item fields, as well as the stat fields.
items.find().include("stat")

Display the default item fields, as well as the stat and the property fields.
items.find().include("stat", "property")

Display the "name" and "repo" fields, as well as the stat fields.
items.find().include("name", "repo", "stat")

Specifying Output Fields

Filtering Properties by Key
You can also use the .include qualifier to display specific properties and filter out all the rest.

Examples:

Display the “name” and “repo” fields along with all properties.
items.find().include("name", "repo", "property.*")

Display the “name” and “repo” fields and the “version” property of each item.
items.find()

AQL implements a default sort order, however, you can specify a different sort order using the
.sort qualifier at the end of your query:
 .sort({"<$asc | $desc>" : ["<field1>", "<field2>",...]})

Example:

Find all jars and sort them by repo and name.
items.find({"name" : {"$match":"*.jar"}}).sort({"$asc" : ["repo","name"]})

Sorting

And that’s just the beginning. As we continue to release more AQL domains, it will take less and less
to do more and more. Keep your eyes open for new capabilities in upcoming releases like…

Looking for archives that have “readme” files sequestered in them? No problem:
items.find({"archive.entry_name" : {"$match":"README.*"}})

Which of my builds has a dependency that uses an “EUPL” license?
builds.find({"module.dependency.item.@artifactory.licenses":"EUPL"})

What are all the dependencies of Artifactory build number 31232?
dependencies.find({"module.build.name":"artifactory","module.build.number":"31232"})

What is the list of modules in Artifactory?
modules.find({"build.name": "artifactory"})

Coming soon...

The best is yet to come...

.include("name", "repo", "@version")

Use:

Published May 2015. For more information, visit jfrog.com/aql.

jfrog.com

	Page 1
	Page 2
	Page 3
	Page 4
	Overview
	Syntax and Usage

	Page 5
	Entities and Fields

	Page 6
	Field Criteria
	Field Criteria
	Constructing Search Criteria

	Page 7
	Properties Criteria
	Properties Criteria
	Compounding Criteria
	Compounding Criteria

	Page 8
	Comparison Operators
	Comparison Operators
	Using Wildcards
	Using Wildcards

	Page 9
	Displaying All Fields
	Displaying All Fields
	Displaying Specific Fields
	Displaying Specific Fields
	Displaying Fields from Other Entities
	Displaying Fields from Other Entities
	Specifying Output Fields

	Page 10
	Filtering Properties by Key
	Filtering Properties by Key
	Filtering Properties by Key
	Sorting
	Sorting
	Coming soon...
	Coming soon...

	Page 11
	Page 12

