Bintray Automation for a Tedious Situation "/

Why Bintray was Chosen to Scale Thousands of WebJar Files ]FTO?

James Ward
salesforce Engineering and Open Source Ambassador
Salesforce.com

Why Bintray Automation was the Best Solution

James Ward's WebJars project is a classic example of how JFrog Bintray can be 250 Hours of Manually Scaling
used to scale up a manual procedure into an automated, on-demand, 1000 Classic Webjars
deployment process that's distributed and available within the community.

Realizing that his manual efforts to deploy WebJars during his free time were 216 Hours of Manually Scaling
unrealistic to maintain in the long run, using Bintray’s extensive REST API, Ward 3600 WebJar Versions

developed an automated way for contributors to make WebjJars available to the
community ondemand using]Center, Bintray's public Maven repository “

JavaScriptecosystem On-Demand Deployment and

Historically, the JavaScript ecosystem lacked proper dependency managers, Automated Scaling

comparable to ones that have existed for years in the Java world. The NPM Registry
is generally considered polluted, and incidents like the #npmgate have further
diminished the community's trust in the tool and the repository. Many web
developers could only dream to have “Maven/Gradle and Maven Central for JS”,
and WebJars made it possible.

4,170 Classic WebJars and
8,772 WebJar Versions

WebJars are CSS and JavaScript libraries, like Bootstrap and JQuery, which are packaged into Java Archive (jar) files and deployed
on a public Maven repository. Users can then specify these libraries in their Java package manager, like Maven and Gradle, and
consume them as dependencies. This effectively allows web developers to enjoy the advanced build and dependency
resolution tools of the Java world in their work.

With over 8 million downloads, using WebJars is now an extremely popular way for web developers to resolve and build their
software.

How did WebJars initially get deployed?

Each WebJar had a project containing a POM file, with the Maven build definition, describing all the required metadata and
configuration. Running a Maven build on a Webjar pulled the source code for that web library from its source, packaged it into
thejarfileand deployed it on Maven Central.

Since the number of JavaScriptlibraries continued to grow, this initial manual approach for scaling Webjars was just taking
up too much time, and it was only going to get worse. For example, at that time the NPM repository contained close to
300,000 packages, with almost 500 new ones being added daily. This would have translated into many hours of manual work.
Adding to this was the licensing challenge that impacted deployment times, because of poor licensing standards that results in
many license references not beingin areadable form.

Why Bintray Automation was the Best Solution

Automationwas the only way to scale the WebJars project, with the following requirements:

* Availabilityon]Center (and Maven Central for backwards compatibility)

* On-demand deployment

* Noneedforanadditional repository

* Automaticinclusion of package metadata, such assource codelocationand licenserequirements

* Compatibilitywith NPM and Bower repositoriesin order toaccess]avaScriptlibrariesand metadata

JFrogBintray met all of the Webjar project specifications, including deployment to JCenter (with automaticsyncto

Maven Central), on-demand availability, compatibility with NPM and Bower repositories, and automated
metadatainclusion.



https://www.jamesward.com/2015/03/23/scaling-the-webjars-project-with-on-demand-bower-packages
https://bintray.com/bintray/jcenter
http://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
https://www.webjars.org/
https://bintray.com/docs/usermanual/uploads/uploads_centralrepositories.html#_jcenter

Bintray was the ideal choice as the means for automating the scaling of WebJars. In addition to meeting all of the above
prerequisites, Bintray natively supports all major package formats, which allows seamless work with industry-standard
development, build, and deploymenttools. Moreover, Bintray's APl preserves many REST API norms which facilitate learning,
use, and the complexities of dealing with licenses.

“To do all this I used the B intray API, which is actually a really fantastic API. It really preserves all of the norms
of RESTAPI's. It was really easy to learn and use.
The REST APIs here are really straight forward, just standard REST using the HTTP verbs to do the things you

|17

would expect. Super easy James Ward, Engineering and Open Source Ambassador at Salesforce.com

Bintray’s optimal management console allows users to view all deployed packages, with their associated files, versions and
status. Additional metadata, such as the source code location and licenses, is also included. Bintray also provides an easy to
use interface for users to manage their artifact versions. This is especially useful when a deployment fails and a re-sync is
needed.

Bintray exceeded the basic needs of an automated system due to its wide support of package formats, APls, and

management console.

On-Demand Deployments Thrive with Bintray

It now only takes a minute for the automatic scaling deployment process, enabled by Bintray, requiring only the version,
group ID and artifactID to be specified. After which the WebJar is readily availablein the library for a Java build.

Within ayear, the Bintray solution has successfully resulted in thousands of on-demand deployments that continue to grow.

One year later

1,950 4,650 2,230 4,157
Named Bower Artifacts Versioned Bower Artifacts Named NPM Artifacts Versioned NPM Artifacts
Deployed On-Demand Deployed On-Demand Deployed On-Demand Deployed On-Demand
summary

After volunteering over 460 hours of his time to manually deploy WebJars, James Ward realized that his continued
commitment was better spent on developing an on-demand automation process. With JFrog Bintray, the project’s
requirements were easily met, and Ward was able to scale his WebJars project to allow the community to deploy Webjars on-
demand.

Going beyond OSS
This case study shows the value of Bintray APIs to facilitate automationin an OSS project.

Enterprise Bintray users get even more powerful functionalities with the API, including automated handling of access control
through access keys and entitlements, detailed stats, detailed logs, dynamic downloads, private repositories, unlimited API
queries,and more.

Have anaccount? Go Premium

Don'thaveanaccount?Sign up for afree trial

Why Bintray was selected as the Best Automation Solution
* On-demand deployment to JCenter (with automatic sync to Maven Central), &

NPM/Bower compatibility and automatic metadata

* Native support for major package formats and REST APl industry standards lFrog Bintray

* Versatile management console



https://bintray.com/docs/api/
https://bintray.com/docs/usermanual/premium/premium_bintraypremium.html#_available_plans
https://bintray.com/account/pricing
https://bintray.com/signup

	Page 1
	Page 2

